
Non-abelian statistics and the S matrix
Paul Fendley

Non-abelian statistics are just plain interesting.

They probably occur in the ν = 5/2 FQHE, and people are constructing

time-reversal-invariant models which realize them.

One conceivable application is in quantum computing.
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In 2+1 dimensions, the statistics of particles follows from the properties of the

wavefunction under braiding.

With anyons, the wavefunction can change by a phase.

With non-abelian statistics, how the wavefunction changes
depends on the order in which the particles are braided.
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Outline:

1. projecting onto the plane

2. what this has to do with the S matrix

3. finding field theories

4. finding lattice models

work with E. Fradkin

related work with E. Ardonne and E. Fradkin
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A convenient way of describing braiding is to project the world line of the particles onto

the plane. Then the braids become overcrossings
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The generators of the braid group must satisfy

BiBi+1Bi = Bi+1BiBi+1
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For non-abelian statistics, we need the Bi to be matrices so, e.g., BiBi+1 6= Bi+1Bi.

One simple example is well-known from knot theory. Let e be a monoid:

I e

Then let the braid Bi be related to ei by

Bi = I − qei B−1
i = I − q−1ei

for some parameter q.
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The Bi defined this way satisfy the braid-group relation because the ei satisfy the

Temperley-Lieb algebra

e2i = dei ei ei±1 ei = ei

= d =

where d = q + q−1. Note that closed loops are weighted by d.
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When

d = 2 cos[π/(k + 2)] i.e. q = eiπ/(k+2),

these are the statistics of (doubled) SU(2)k Chern-Simons theory

Freedman, Nayak, Shtengel, Walker and Wang

I’m going to discuss the (in some ways simpler) O(3)k Chern-Simons theory.

For SU(2)k, the particles (Wilson loops) are in the “spin-1/2” representation. For

SO(3)k, they are in the “spin-1” representation. We can “fuse” together the spin-1/2

particles to get spin-1 particles by I − e/d:

− 1=
d
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The braid is then

B = q2I −X + q−2E

I X E

In this case, one can check that closed loops get a weight

d2 − 1 = 1 + q2 + q−2
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The problem: find a quantum Hamiltonian acting on a two-dimensional Hilbert space

which has the above properties.

One answer: Strongly-coupled Yang-Mills theory with a Chern-Simons term

Witten; Ardonne, Fendley and Fradkin

S = SCS + SSC

SCS =
k

4π

∫
M

εµναTr

[
Aµ∂νAα +

2
3
AµAνAα

]
SSC =

1
2e2

∫
M

Tr
[
F0iF

0i
]

The ground states are Wilson loops.

The excited states are Polyakov loops.
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This is not completely satisfactory: we don’t know how to compute much outside of the

topological limit, there is no obvious lattice model, and we don’t know if a quantum critical

point separates this phase from an ordered phase.

The trick: Think of the basis elements of the Hilbert space as states in a classical 2d

theory. Then find a quantum Hamiltonian which ground-state wavefunction

Ψ0(s) =
e−βEs

Z

where the state s has energy Es, and Z is the classical 2d partition function

Z =
∫

s

e−βEs−βE∗
s

Equal-time correlators in the quantum ground state are classical 2d correlators

〈φ1φ2〉 =
1
Z

∫
s

φ1φ2 e
−βEs−βE∗

s

Note that we need to weight configurations by |Ψ0|2. Rokhsar and Kivelson
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Our planar projection suggests we look for a quantum loop gas, where the basis states of

the two-dimensional Hilbert space are closed loops. In the SU(2)k and SO(3)k cases,

we want them to have weights d and d2 − 1 respectively.

To find the 2d classical model, let’s think instead in terms of a 1+1d quantum model. The

loops are the world lines of the particles of the 1+1d theory.

The upshot: Just think of the 2+1d world lines projected down to 1+1d.
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We need to ensure that the world lines have the right braiding.

In 1+1d, particles can’t go around each other.

1+1d “braiding” is given by the S matrix !

It’s well-known from knot theory that if S(θ) obeys the Yang-Baxter equation, then

Akutsu, Deguchi and Wadati

B = lim
θ→∞

S(θ), B−1 = lim
θ→∞

S(−θ)

where θ is the rapidity difference of the two particles.
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The braiding of the SO(3)k Chern-Simons theory corresponds to the scattering of the

Q-state Potts model with

Q = d2 = (q + q−1)2 = 4 cos2
(

π

k + 2

)

The weight of d2 − 1 = Q− 1 per loop is the number of different domain walls between

the Potts spins.
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All this has been to show:

The Hilbert space of the SO(3)k quantum loop gas is given
by the configurations of the Q-state Potts field theory.

This yields a topological field theory when the weight per loop is independent of its

length. This occurs at infinite temperature in the 2d classical model.

In the Ising case Q = 2 (weight 1 per loop), this reduces to Kitaev’s Z2 model.
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For non-integer Q, the S matrices describe scattering of “restricted” kinks in a potential

with multiple minima.

Smirnov; Chim and Zamolodchikov; Fendley and Read

These braid matrices obey the Jones-Wenzl projector automatically.

2d classical lattice models with this S matrix and domain walls with weight

4 cos2[π/(k + 2)]− 1 behavior are called dilute Ak models.

Warnaar, Nienhuis, and Seaton
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For example, in the dilute A3 model, there are three spins 1, 2, 3, with the restriction that

state 1 cannot be next to 3 (a RSOS model).

The Boltzmann weights are such that only regions of 1 and 2 are minima. Thus there are

two kinds of domain walls: between 1 and 2, and between 2 and itself (spin 3)

Because of the restriction, the “number” of different domain walls is

(1 +
√

5)/2 = 2 cos(π/5) = 4 cos2(π/5)− 1.
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To determine the phase diagram, remember that a configuration s is weighted by |ψ(s)|2

in the quantum theory.

Thus each weight is squared: each loop gets a weight (Q− 1)2.

This suggests that the phase diagram is that of the Qeff -state Potts model, where

Qeff − 1 = (Q− 1)2 = (d2 − 1)2 = 1 + 2 cos[2π/(k + 2)]
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There is a critical point when Qeff ≤ 4: k = 1, 2, 3. k = 1 is trivial, k = 2 is abelian.

k = 3 is the “Lee-Yang” theory (the braiding rules are those of the Lee-Yang CFT)

The critical point with

Qeff = 1 +

(1 +
√

5
2

)2

− 1

2

=
5 +

√
5

2

is the conformal field theory with c = 14/15.

G2 coset !?!

This determines the equal-time correlators in the ground state of the quantum loop gas.
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• There are lattice models and field theories which exhibit topological order and

conformal quantum critical points. For SO(3)k, Potts; for SU(2)k, O(n) model.

• Equal-time correlators at the critical points can be computed exactly.

• There is a gapped field theory with Chern-Simons topological field theory describing

the ground state.

• The excitations of this theory obey non-abelian statistics.

these transparencies at http://rockpile.phys.virginia.edu/montauk.pdf
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